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Abstract
The segmentation of seismic data is a challenging exercise given the complexity and high variability of
subsurface sources. This arduous task is effective in the identification of geological features, including
facies classification, fault detection, and horizon interpretation. As a result, this work introduces a
new cost function entitled Distance Transform Loss (DTL) that punishes deep networks when class
boundaries are misclassified in exchange for more accurate contour delineations, an important aspect
in the geological field. DTL consists of four key steps: contour detection, distance transform mapping,
pixel-wise multiplication, and the summation of all grid elements. We conduct a comprehensive
evaluation of deep convolutional architectures using publicly available seismic datasets, demonstrating
that the proposed approach consistently enhances semantic segmentation performance. The results
highlight DTL as a robust and architecture-agnostic loss function, capable of addressing class imbalance
and boundary delineation challenges that commonly arise in seismic interpretation tasks.

1. Introduction
Given the remarkable evolution and widespread adoption

of convolutional neural networks (CNNs), geophysical re-
searchers are increasingly turning to deep-learning models
for interpreting seismic volumes and enhancing geological
analysis (Monteiro et al., 2024). Leveraging CNNs in geo-
physics allows for unprecedented accuracy and efficiency in
detecting and characterizing earth features. These methods
are particularly useful in analyzing seismic images, which are
used in the exploration of gas, minerals and oil; as well as an
essential mechanism toward groundwater or aquifer studies
and natural hazard assessment (Sun et al., 2022; Tao et al.,
2022; Haggerty et al., 2023), to name a few. Deep learning
techniques, for instance, have proven highly effective in seis-
mic segmentation tasks due to their ability to learn complex
patterns. They can automate the interpretation of subsurface
geology, reducing the time and effort required in manual anal-
ysis and facilitating the identification and understanding of
diverse underground formations.

Semantic segmentation of geological data involves clas-
sifying each voxel within a seismic volume into discrete cate-
gories representing distinct subsurface elements, such as fault
structures, horizon boundaries, lithologies, reservoirs, or salt
bodies (An et al., 2021; Xu et al., 2021; Lee et al., 2024). This
task not only assigns labels to voxels but also aims to accu-
rately interpret the complex geological structures captured in
seismic surveys. By precisely delineating object boundaries,
automated segmentation offers a detailed and comprehen-
sive understanding of subsurface features. This granularity is
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crucial, as it can reveal small-scale features that may be over-
looked in traditional analysis methods. Ultimately, segmenta-
tion enhances the precision of geological analysis, leading to
significant cost reductions in exploration and empowering sci-
entists with more informed decision-making and insights for
resource exploration and extraction alongside an improved
geological understanding.

Convolutional neural networks, along with the broader
suite of deep learning methods, have transformed image anal-
ysis and are now commonly employed in automated seismic
facies segmentation. These networks are particularly well-
suited for geology tasks given their ability to automatically
learn hierarchical features from the input data (Li et al., 2020;
Zhang et al., 2021). Neural networks are highly dependent
on cost functions, also called loss functions1, which serve as
the guiding hand for the training process, determining how
well the network is performing and where adjustments are
needed (Vareto et al., 2024). More precisely, a loss function
quantifies the difference between the network’s predictions
and the ground truth, providing a measure of error that the
network aims to minimize during training (Jadon, 2020).The
goal is to find the minimum penalty score of the cost func-
tion, which corresponds to the best set of weights and biases
that make accurate predictions. Without this mechanism,
a neural network would lack feedback to assess its perfor-
mance, refine parameters and improve the predictions during
training (Taghanaki et al., 2021).

The inherent design of neural networks presents addi-
tional challenges for accurately preserving boundaries in seis-
mic segmentation. Downsampling layers, often employed
to reduce computational complexity and expand the recep-

1In this manuscript, we use the terms cost and loss functions inter-
changeably.
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tive field, can inadvertently lead to a loss of fine-grained de-
tails, including critical boundary information. Limited recep-
tive fields can further exacerbate this issue by restricting the
model’s ability to capture global context, leading to blurred or
inaccurate boundary predictions. Additionally, the tendency
of neural networks to smooth spatial edges during feature
extraction can diminish the sharpness of class boundaries,
making it increasingly challenging to distinguish between
closely aligned or intricately connected regions (Wang et al.,
2017). As detailed in the Section 2, the foregone challenges
have led to the development of specialized loss functions and
architectural modifications that aim to preserve sharp bound-
aries while maintaining high overall segmentation accuracy.

To address the persistent issue of boundary misclassifica-
tion in seismic segmentation, we propose a novel cost func-
tion termed Distance Transform Loss (DTL). This method
builds upon the concept of distance transform mapping in
digital image processing (Fabbri et al., 2008; Felzenszwalb
and Huttenlocher, 2012; Gonzalez and Woods, 2018), a tech-
nique that quantifies the spatial proximity of each pixel to
its nearest boundary. DTL introduces penalties that are pro-
portional to the distance of a misclassified pixel from the
closest ground-truth boundary, effectively encouraging the
network to focus on achieving sharper and more accurate
boundary delineations. These penalties are calculated using
the 𝐿1 Manhattan distance, a measure that captures the min-
imal number of grid steps required to reach the nearest true
boundary pixel. Unlike traditional loss functions that treat all
pixels uniformly, DTL prioritizes regions of higher bound-
ary sensitivity, ensuring that errors in these critical areas are
more heavily penalized.

To further distinguish DTL from existing boundary-aware
loss functions, we clarify that our approach performs pixel-
wise multiplication between the predicted contour map and
the ground-truth distance map, producing a discrete and dif-
ferentiable supervision matrix. This formulation is designed
to support traditional pixel-wise losses, like cross-entropy
loss, and can be easily integrated with them in a multi-term
objective function. Unlike generic boundary-aware losses,
DTL is tailored originally for seismic data, where accurately
capturing subtle and complex geological boundaries — such
as faults, salt bodies, and stratigraphic interfaces — is of
critical importance.

For a clear illustration, Figure 1 provides an overview of
how DTL detects contours, calculates the distance transfor-
mation, and finally returns the corresponding penalty score
based on the calculated distances. By construction, DTL
ensures that the estimated loss is proportional to the amount
of boundary misalignment, holding larger penalties when
predictions deviate further from the true boundaries. Ob-
serve that the designed criterion is not only visually intuitive
but also conceptually straightforward, making it easy to im-
plement through existing deep learning frameworks. The
introduction of DTL represents a significant step forward in
enhancing the robustness of neural networks in tasks that
require detailed and accurate segmentation, particularly in
complex domains such as seismic data analysis.

There are a few seismic facies datasets available for se-
mantic segmentation, such as Netherlands’ F3 BLOCK, Nova
Scotia’s PENOBSCOT, and New Zealand’s PARIHAKA (Alau-
dah et al., 2019; Baroni et al., 2019; Inc, 2020). To the best
of our knowledge, there is no record of studies encompassing
experiments using these publicly available volumes simulta-
neously. In fact, this seems to be the first study to provide
both quantitative and qualitative analyses encompassing ex-
periments conducted on the aforementioned datasets. We
incorporate them into our semantic segmentation analysis,
acknowledging their valuable resources for tasks like hori-
zon interpretation, facies classification, and fault detection.
Employing multiple datasets endorses the reliability, gen-
eralizability, and broader applicability of the models being
evaluated.

It is important to note that the primary goal of this study
is to isolate and analyze the effect of the proposed DTL on
boundary accuracy within controlled, well-annotated envi-
ronments. While our experiments demonstrate that DTL gen-
eralizes well across datasets of varying geological settings,
a detailed analysis of noise robustness and transfer learning
remains beyond the scope of this work and is considered
a promising direction for future research. In summary, the
major contributions of this study are:

• DTL, a novel cost function designed to guide deep neu-
ral networks in predicting sharper and more precise
boundaries for seismic structures. DTL is particularly
effective in enhancing the accuracy of boundary de-
lineation, addressing a common challenge in image
segmentation tasks by minimizing boundary misclassi-
fications and improving the overall fidelity of segmen-
tation outputs.

• A batch of experiments analyzing different cost func-
tions and deep learning architectures using specific
metrics, such as Boundary F1 Score (BF1S) and Mean
Intersection over Union (MIOU). These metrics were
chosen to provide a balanced assessment of boundary
accuracy and overall segmentation quality, allowing
for a detailed comparison of distinct approaches and
demonstrating DTL’s superiority in handling complex
segmentation tasks.

• An evaluation of different seismic volumes showcasing
the robustness and adaptability of the proposed DTL
cost function across diverse domains (datasets). The
results highlight DTL’s ability to generalize well across
varying seismic datasets, underscoring its potential as
a reliable tool for segmentation in heterogeneous data
environments.

2. Related Works
Semantic segmentation has become a crucial task in geo-

scientific applications, especially for interpreting complex
subsurface structures from seismic data. At the heart of most
segmentation models lies the loss function, which directly
influences the quality of the predicted output (Vareto et al.,
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Figure 1: Distance Transform Loss: Pipeline depicts how the ground-truth image 𝐺
and two different network predictions 𝑃𝐴 and 𝑃𝐵 are processed to obtain their respective
error scores (loss). Note that the approach starts detecting the contour among class labels
one and two (blue and coral-painted pixels, respectively). Then, it proceeds with the
distance transform estimation for the ground truth only and continues with the pixel-wise
multiplication between the prediction contours and the ground-truth distance map. It ends
up with the summation of all matrix elements to provide a conclusive loss score.

2023). However, in the context of geophysical interpreta-
tion, where accurately delineating the boundaries between
geological structures is paramount, traditional cost functions
often fall short. This has prompted a growing amount of
research focused on developing edge-aware loss formulations
and metrics that better align with the needs of semantic facies
segmentation. In this section, we review key contributions
in this area, highlighting their strengths and limitations, with
particular attention to their applicability to seismic data and
their capacity to preserve boundary precision.

The pixel-wise Cross-Entropy Loss (CEL) has emerged
as one of the most widely used loss functions in seismic
segmentation tasks (Jadon, 2020; Wang et al., 2021). CEL
is favored for its straightforward approach as it encourages
models to predict the correct class for each pixel by measur-
ing the dissimilarity between estimated class probabilities
and ground-truth labels. Despite its popularity, CEL over-
looks a critical aspect of semantic segmentation: prioritizing
the accurate delineation of edges and boundaries between
distinct geological features or regions. Boundaries between
geological features often represent the most critical informa-
tion in seismic data, as they delineate reflection transitions
and stratigraphic changes between distinct subsurface struc-
tures. CEL does not impose additional penalties for errors
occurring near the boundaries of different classes but treats
all pixels uniformly regardless of their spatial context. As a
result, neglecting the importance of boundary precision can
significantly compromise the accuracy of seismic segmenta-
tion and present profound implications for the interpretation

of subsurface geology.
Familiar with the limitations of CEL in handling bound-

ary precision, several researchers have explored edge-aware
strategies to enhance segmentation accuracy. Csurka et al.
(2013), for instance, adapted the Berkeley contour matching
score (Martin et al., 2004) to propose the Boundary F1 Score
(BF1S), specifically designed to evaluate the accuracy of re-
constructed contours in segmentation problems. Bokhovkin
and Burnaev (2019) introduced the Boundary F1 Loss (BFL),
which integrates both BF1S and Intersection over Union (IOU)
to penalize errors along object borders in binary classification
of remote sensing data. The BF1S metric provides a more
refined assessment of edge quality compared to traditional
pixel-wise accuracy, whereas IOU has proven effective in con-
texts such as satellite imagery, where overall region overlap is
critical. Although BFL improves boundary delineation, it is
prone to higher computational cost and increased sensitivity
to hyperparameters, especially with high-resolution imagery.
Its adaptation to seismic data is further limited by the ambi-
guity of boundaries in highly textured or overlapping regions.
In addition, its vulnerability to noise and acquisition arti-
facts may cause overfitting or imprecise contour predictions,
undermining its reliability.

Audebert et al. (2019) reframed segmentation as a re-
gression problem, leveraging distance maps to capture spa-
tial relationships and encourage smooth, continuous outputs.
This method predicts signed distance fields rather than binary
masks, allowing the model to learn spatially coherent object
representations. While effective for objects with regular ge-
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ometry, it is less capable of representing the irregular and
heterogeneous patterns common in subsurface data. More-
over, signed distance maps are highly sensitive to ground-
truth precision, and noisy annotations can sharply degrade
performance. Caliva et al. (2019) proposed a cost function
that weights pixel-level errors according to their proximity to
object boundaries. This approach prioritizes edge accuracy,
attempting to produce sharper object delineations. However,
in seismic data, where formations exhibit complex layering
and poorly defined boundaries, signed distance maps may
induce numerical instabilities near noisy interfaces, often
requiring smoothing or post-processing for stability.

In medical imaging, Xue et al. (2020) introduced a shape-
aware segmentation method that also predicts signed distance
maps to improve organ boundary localization. Although ef-
fective in domains with clear structural priors and regular
geometries, this method assumes a degree of shape consis-
tency that does not extend to seismic interpretation, where
structures are frequently irregular, discontinuous, and noisy.
Furthermore, signed distance maps are computationally heav-
ier than unsigned ones, particularly in 3D or high-resolution
volumes. Similarly, Gerl et al. (2020) targeted biological
tissue segmentation using a loss based on signed distance
maps. Their formulation was designed for single continuous
surfaces with nearly horizontal layering and limited class
diversity. The method incorporates prior knowledge of skin
thickness to enforce anatomical plausibility, which improves
segmentation stability, but such assumptions are not transfer-
able to seismic data characterized by faults, unconformities,
and abrupt lithological changes.

More recently, Wang et al. (2022) introduced the Active
Boundary Loss (ABL), which enhances edge localization
by computing a direction vector for each pixel along the pre-
dicted boundary and guiding it towards the nearest point on
the ground truth. This iterative correction mechanism allows
the model to refine its predictions dynamically, improving
contour alignment. ABL has shown promising results in
urban image segmentation tasks, especially where object
boundaries are sharp and spatially consistent. However, in
seismic applications, boundaries such as faults, unconformi-
ties, and stratigraphic contacts are often weak, noisy, and
discontinuous, unlike those in natural images. This com-
plexity makes the estimation of reliable direction vectors
difficult, since many boundaries are fragmented, uncertain,
or even absent in the annotations. Thus, while ABL is theo-
retically well-suited for edge refinement, its dependency on
boundary integrity and consistent spatial structure can hin-
der robustness and limit its generalization in seismic facies
segmentation.

Although the aforementioned approaches have made no-
table progress in improving edge delineation in semantic
segmentation, they are not without limitations. Many of
these methods introduce increased computational overhead
and exhibit heightened sensitivity to hyper-parameter tun-
ing, particularly when applied to high-resolution images and
large-scale datasets. Furthermore, despite their effectiveness
in natural image domains, most of these loss functions (Zhao

et al., 2019; Chen et al., 2020; Borse et al., 2021; Liang et al.,
2022; Tian et al., 2022) have not been rigorously evaluated
on seismic datasets or released their implementation to the
research community. Seismic data present unique challenges,
such as low signal-to-noise ratios, discontinuous and sub-
tle boundaries, and significant intra-class variability, which
may not be adequately addressed by models calibrated on
conventional benchmarks. Moreover, the absence of stan-
dardized evaluation protocols and benchmarking practices
within the geophysical domain complicates fair comparisons
and raises concerns regarding the generalizability and robust-
ness of these methods when transferred to more complex and
domain-specific tasks.

The effectiveness of the aforementioned loss functions
depends on two interdependent factors: (i) the choice of
an appropriate deep learning architecture for semantic seg-
mentation and (ii) the availability of high-quality annotated
datasets. In fact, the generalization capability of deep learn-
ing models is heavily reliant on the quality and quantity of
annotated datasets as they provide the essential ground truth
required for training models to accurately distinguish and clas-
sify complex subsurface geological structures. Fortunately,
publicly labeled datasets – such as F3 BLOCK, PENOBSCOT,
and PARIHAKA – serve as essential benchmarks, enabling
reproducible evaluation of how cost functions perform un-
der domain-specific challenges such as class imbalance and
ambiguous stratigraphic transitions.

The Netherlands’ F3 BLOCK dataset (Alaudah et al.,
2019) was built using 3D seismic data acquired in 1987,
supplemented with information from 26 well logs and guided
by a detailed geological study of the region. The dataset rep-
resents a fully interpreted geological model of the F3 Block,
located offshore in the North Sea — an area well-known for its
hydrocarbon potential. To simplify the original stratigraphic
complexity for machine learning applications, the benchmark
merges seven lithostratigraphic units (Upper, Middle, and
Lower North Sea Groups; Chalk; Rijnland; Scruff; Zechstein)
into six facies classes by combining the Rijnland and Chalk
groups. The seismic dataset covers an area of approximately
386 km2 and is organized as a 602×902×255 volume, com-
prising 602 inlines (100–701), 902 crosslines (300–1201),
and 255 depth samples. Baically, each voxel represents a
cube of 25×25×25 meters in size, offering a high-resolution
3D representation of the subsurface.

The PENOBSCOT dataset from Nova Scotia (Baroni et al.,
2019) is derived from the publicly available Penobscot 3D
seismic survey, acquired on the Scotian Shelf, Canada. Al-
though the original dataset contained five interpreted horizons
and well log data, it was reinterpreted for machine learning
purposes to include seven horizons and four faults, which
together define eight seismic facies intervals (Shallow Cover,
Deep Parallel, Mississauga Deltaics, Transitional Parallel,
Subtle Deep Marine, Variable Subparallel, Slump Deposit
Zone, and High-Energy Truncated). The full seismic vol-
ume spans roughly 87 km2, consisting of 601 inlines and 482
crosslines, with a total recording time of 6000 ms sampled at
2 ms intervals. The acquisition bin size is 12.5 meters in the
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inline direction and 25 meters in the crossline direction. For
model development and evaluation, the dataset is split into
training and testing subsets: 289 slices are used for training
and 192 for testing in the crossline direction, whereas 358
slices are used for training and 238 for testing in the inline
direction.

The PARIHAKA dataset from New Zealand (Inc, 2020) is
based on a 3D seismic survey conducted offshore Taranaki,
covering an area of approximately 1520 km2. Dual-source
arrays were fired alternately every 25 meters during acqui-
sition, and approximately six seconds of seismic reflection
data were recorded for each shot, with a sampling interval of
2 ms. The dataset was released by New Zealand Petroleum
and Minerals (NZPM) and comprises a seismic volume along
with a corresponding labeled volume, where each voxel is
assigned to a seismic facies class. The annotation volume
categorizes each voxel into one of six facies categories: Base-
ment, Slope Mudstone A, Mass Transport Deposit, Slope
Mudstone B, Slope Valley, and Submarine Canyon System.
For machine learning applications, the data is formatted into
a volume of dimensions 590 × 782 × 1006, representing 590
inlines, 782 crosslines, and 1006 time samples per trace, as
standardized in prior benchmarks (Kaur et al., 2023).

F3 BLOCK, PENOBSCOT, and PARIHAKA provide a di-
verse foundation for benchmarking seismic segmentation
methods. In fact, each dataset offers unique geological set-
tings, stratigraphic complexities, acquisition parameters, and
a detailed set of annotations, allowing for a comprehensive
evaluation of model performance across different geological
conditions. Unfortunately, most publicly available seismic
datasets lack annotated volumes, which constrains the scala-
bility and generalizability of supervised deep learning models.
Labeled seismic data are notably scarce due to the inherent
complexity and cost associated with generating accurate an-
notations, requiring domain expertise from geoscientists who
must analyze volumetric data and identify subtle geological
structures with high precision. Although the present study
focuses on a novel cost function tailored for supervised learn-
ing, we recognize the importance of unsupervised and self-
supervised strategies that exploit the intrinsic structure of
seismic data to pre-train models in the absence of manual
labels. Such approaches not only reduce the dependency on
expert-generated annotations but also improve model gener-
alization across unseen data.

Recent developments such as SALT3DNET (Yang et al.,
2024), the self-supervised learning framework proposed by
Monteiro et al. (2022), and the few-shot segmentation ap-
proach introduced by Saad et al. (2022), demonstrate the
potential of these techniques to advance seismic interpreta-
tion with minimal supervision, bridging the gap between data
availability and model performance. While self-supervised
learning has become a widely adopted strategy for pretraining
models on large-scale unlabeled seismic data, downstream
specialization still relies on task-specific fine-tuning and op-
timization to achieve high segmentation accuracy. This is
where the proposed Distance Transform Loss provides dis-
tinct advantages: by incorporating boundary-aware supervi-

sion, our approach promotes sharper delineation of complex
geological features — such as faults, channel edges, and
salt-body boundaries — thus enhancing the effectiveness of
fine-tuning in seismic segmentation tasks.

3. Boundary-Aware Cost Function
Distance Transform (DT), also referred to as Distance

Mapping or Distance Transformation, is a method for com-
puting the distance from each non-target pixel in an image
(background) to the nearest pixel belonging to a target object
(foreground). DT produces a distance map usually employ-
ing 𝐿1, 𝐿2, or 𝐿∞ norm, respectively known as Manhattan,
Euclidean, and Chebyshev. The DT computation relies on the
prior execution of image translation and contour detection:
the former applies a transformation matrix to displace pixels
in 𝑥 and 𝑦 directions and generate shifted images, whereas
the latter subtracts an image from its shifted version so that
edge-lying pixels store non-null values and the remaining
ones are filled with zeros. DT lays the foundation for the
proposed Distance Transform Loss, a criterion that can be
attached to versatile cost functions in favor of punishing deep
neural networks when region or object boundaries are poorly
delineated.
3.1. Distance Transformation

The Distance Transform (DT) is an image processing
technique that transforms a binary image 𝐼 ∈ ℝ𝑚×𝑛 with 𝑚
rows and 𝑛 columns into a new representation where each
background pixel at coordinates (𝑥, 𝑦) is assigned a value
corresponding to its distance from the nearest foreground (tar-
get) pixel located at (𝑥̌, 𝑦̌) (Felzenszwalb and Huttenlocher,
2012). To formalize this process, let , ∶ 𝕀𝑚×𝑛 → ℝ𝑚×𝑛

denote functions applied over image 𝐼 , where  computes
the Manhattan distance between a pixel (𝑥, 𝑦) and its closest
foreground pixel (𝑥̌, 𝑦̌), and  is a predicate function that re-
turns zero when (𝑥̌, 𝑦̌) ∈ 𝐹 , with 𝐹 representing the set of all
foreground pixels. The resulting distance map provides a con-
tinuous and differentiable gradient signal that is particularly
useful for tasks involving boundary-sensitive segmentation.
(𝐼) = min

(𝑥̌,𝑦̌)∈𝐼
(|𝑥− 𝑥̌|+|𝑦− 𝑦̌|+(𝑥̌, 𝑦̌)), ∀ (𝑥, 𝑦) ∈ 𝐼 (1a)

(𝑥̌, 𝑦̌) =
{

0 if (𝑥̌, 𝑦̌) ∈ 𝐹
∞ otherwise (1b)

Instinctively,  secures that the mapping function only con-
siders the distance between the target and non-target points
by aggressively penalizing the ones not enrolled in 𝐹 as they
become very large to satisfy the minimization function. Note
that the first term in Equation (1a) does not depend on the 𝑦
column and, therefore, it can be rewritten as follows in order
to fix row to index 𝑥 so that it iteratively searches for the
minimum separation between reference point (𝑥, 𝑦) and all
the other pixels lying in coordinates (𝑥, 𝑦̌) ∀ 𝑦̌ ∈ 𝐼𝑛:
(𝐼) = min

𝑥̌∈𝐼
(|𝑥−𝑥̌|+min

𝑦̌∈𝐼
(|𝑦−𝑦̌|+(𝑥̌, 𝑦̌))), ∀ (𝑥, 𝑦) ∈ 𝐼 (2a)
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(𝐼) = min
𝑥̌∈𝐼

(|𝑥 − 𝑥̌| +|𝑥̌(𝑦)), ∀ (𝑥, 𝑦) ∈ 𝐼 (2b)

The restriction |𝑥̌(𝑦) applied to distance function 
refers to a single-directional column-wise distance trans-
form limited to row indexed by 𝑥̌. In other words, a two-
dimensional Manhattan 𝐿1 distance mapping consists of 𝑚
one-dimensional computations along each column times 𝑛
transformations along each row. Algorithm 1 computes the
distance mapping under the 𝐿1 metric for an array of size
𝑛 taking (𝑛) time (Felzenszwalb and Huttenlocher, 2012)2.
For 𝑚 × 𝑛 binary images, a single-directional distance map-
ping can be attained by repeating Algorithm 1 a total of 𝑚
times. Then, a multi-directional approximation to the 𝐿1norm can be attained in linear time with respect to the num-
ber of pixels, i.e. (𝑑 × 𝑚 × 𝑛), where 𝑑 is the number of
orientations usually assuming a constant value 𝑑 = 2. The
first execution covers the vertical direction whereas the sec-
ond one handles the horizontal orientation. As a result, the
algorithm produces an optimal 𝑚× 𝑛 distance transformation
matrix seeing that boundaries can resemble any sort of shape
or structure.
Algorithm 1 One-dimensional Distance Transform ()
Require: 𝐼 ∈ {0, 1}𝑛 ⊳ binary image (𝐼[𝑖] = 1 if 𝑖 ∈ 𝐹 )

𝐷 ← 𝐼 ∗ ∞ ⊳ image complement
for 𝑖 = 1 to 𝑛 do

𝐷[𝑖] ← min(𝐷[𝑖], 𝐷[𝑖−1] + 1) ⊳ forward pass
end for
for 𝑖 = 𝑛 − 1 to 0 do

𝐷[𝑖] ← min(𝐷[𝑖], 𝐷[𝑖+1] + 1) ⊳ backward pass
end for

3.2. Distance Metric Efficiency
Essentially, the adoption of the Manhattan distance is

generally motivated by both computational efficiency and its
alignment with the discrete grid structure of seismic data. The
𝐿1 metric preserves directional uniformity on axis-aligned
grids, which is consistent with how class boundaries typically
appear in seismic volumes. It ensures more conservative and
interpretable penalization near class boundaries, which is
crucial in tasks such as seismic facies classification where
geological boundary delineation is paramount. Other metrics
like 𝐿2, also known as Euclidean distance, tends to underesti-
mate the diagonal units of distance maps, potentially leading
to overly optimistic gradient signals during backpropagation.

The 𝐿1-based distance transform can be optimally im-
plemented via dynamic programming, as demonstrated in
Algorithm 1, due to its inherent monotonicity property. More
precisely, the 𝐿1 metric considers only horizontal and verti-
cal distances, the minimum distance values propagate con-
sistently across the grid, enabling the reuse of previously

2Big  notation is a well-known way to describe the performance of
an algorithm as the input size grows. In terms of distance transformation, it
provides an upper bound of how the algorithm’s runtime increases as the
input image dimension varies.

computed values during forward and backward passes. In
contrast, the 𝐿2 (Euclidean) distance does not possess the
same monotonicity since it involves diagonal relationships
and square root operations, requiring more complex algo-
rithms that do not benefit from the very same straightforward
dynamic programming optimizations. Furthermore, the se-
lection of 𝐿1 is not only computationally motivated but also
implementation-friendly for GPU-based training pipelines
where runtime efficiency is critical.
3.3. Distance Transform Loss

The Distance Transform Loss (DTL) is designed to drive
a machine-learning model toward predicting sharp and ac-
curate boundaries by penalizing networks for misclassified
region delineations. Figure 1 illustrates how the method
works when distinct predictions, 𝑃𝑎 and 𝑃𝑏 (top/bottom), are
contrasted with the same reference label 𝐺 (middle row).
DTL serves the purpose of deriving a penalty score that re-
flects the Manhattan distance between the predicted boundary
and its associated ground truth. Equation 3a provides a def-
inition for DTL, which depends on contour detection (3b),
binarization (3c), geometric translation (3d), followed by a
pixel-wise multiplication (Gonzalez and Woods, 2018). Com-
ponent 𝑃 ∈ ℝ𝑚×𝑛×𝐾 represents the predicted segmentation
image whereas 𝐺 ∈

{

𝔹𝑚×𝑛×𝐾
| 𝔹 = {0, 1}

} denotes its cor-
responding binary ground truth, 𝐾 indicates the number of
training classes, and (𝑥, 𝑦) designates the pair of pixel coor-
dinates. Essentially, DTL can be expressed as:

DTL(𝑃 ,𝐺) =
𝐾
∑

𝑘=0

𝑚×𝑛
∑

(𝑥,𝑦)
[(𝑃 , 𝑘)⊙((𝐺, 𝑘))][𝑥 𝑦] (3a)

(𝐼, 𝑘) =
[

𝐼 (𝑘) − 𝐼 (𝑘)
]

≠ 0, where: (3b)

𝐼 (𝑘)[𝑥 𝑦] =
{

1 if argmax𝑧
(

𝐼[𝑥 𝑦 𝑧]
)

= 𝑘
0 otherwise , ∀ (𝑥, 𝑦) ∈ 𝐼 (3c)

𝐼 (𝑘)[𝑥̌ 𝑦̌] = 𝐼 (𝑘)[𝑥 𝑦] | [𝑥̌ 𝑦̌] = [𝑥 𝑦 1] ×
⎡

⎢

⎢

⎣

1 0
0 1
𝑡𝑥 𝑡𝑦

⎤

⎥

⎥

⎦

, ∀ (𝑥, 𝑦) ∈ 𝐼 (𝑘)

(3d)

The proposed DTL function, denoted asDTL(𝑃 ,𝐺), takes
instances 𝑃 and 𝐺 as inputs and immediately employs sub-
functions (𝑃 , 𝑘) and (𝐺, 𝑘) for each image independently,
considering class 𝑘. In fact, (𝐼, 𝑘) corresponds to the pro-
cess of obtaining contours through the subtraction of the
binary image 𝐼 (𝑘) from its shifted version 𝐼 (𝑘), an agile strat-
egy to highlight edge-details prominently. Component 𝐼 (𝑘)
represents the flattening and binarization of image 𝐼 with
respect to class 𝑘. Basically, it iterates over all pairs of pixel
coordinates (𝑥, 𝑦) in the three-dimensional grid 𝐼 and checks
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whether the index along the 𝑧-axis holding the highest proba-
bility distribution matches class 𝑘. When it holds true, the
corresponding position in the resulting two-dimensional ma-
trix 𝐼 (𝑘) ∈ 𝔹𝑚×𝑛 is set to 1 or 0, otherwise. Component 𝐼 (𝑘)
refers to the transformation of coordinates where (𝑥, 𝑦) are
pixels positions in the binarized image 𝐼 (𝑘) and (𝑥̌, 𝑦̌) are
their respective coordinates on the translated image 𝐼 . In the
proposed approach, the translation matrix holds parameters
𝑡𝑥 = 1 and 𝑡𝑦 = 1 responsible for the shifting amount on the
𝑥 and 𝑦-axis, respectively; sliding all pixels one unit to the
right and one unit downward.

Upon the estimation of both components, function (𝐼, 𝑘)
calculates the underlying contour for class 𝑘 between binary
images 𝐼 (𝑘) and 𝐼 (𝑘) by subtracting one from the other. As
illustrated in Figure 1, the contour detection process generates
a new image where pixels located along the class boundaries
accumulate non-zero values, whereas the background region
is filled with pixels having a value of zero. Fundamentally, the
Boolean operator ≠ ensures that non-negative values persist
on the grid as it is transformed into a binary matrix.

Back to Equation (3a), function DTL(𝑃 ,𝐺) invokes the
distance transform function  to compute the map associated
with the ground-truth boundary contours. It is accomplished
by iteratively assigning each background pixel the 𝐿1 dis-
tance to the nearest target point lying on the foreground class
boundary. Symbol ⊙ indicates an element-wise multiplica-
tion conducted between the binarized contour (𝑃 , 𝑘) and
the obtained distance mapping ((𝐺, 𝑘)), which results in
a transient image 𝐼 ′ ∈ ℝ𝑚×𝑛. Observe that the inner-right
sigma notation designates the overall sum of all pixel val-
ues in the resulting sparse matrix by looping through all
pixel coordinates (𝑥, 𝑦) taken from image 𝐼 ′ . The outer-left
summation aggregates the error score of each class 𝑘 ∈ 𝐾
separately. Basically, a low error score announces that the
predicted segmentation image achieves a near-perfect match
to its respective ground-truth sample.
3.4. Aggregation of Cost Functions

The proposed cost function focuses on guiding the net-
work toward the demarcation of more accurate class fron-
tiers as it considers the Manhattan geometry among pixel
coordinates. Unlike recent boundary-aware cost functions
(Bokhovkin and Burnaev, 2019; Zhu et al., 2018; Liang et al.,
2022; Borse et al., 2021; Wang et al., 2022), DTL has been
specifically designed for multinomial semantic segmentation.
As a matter of fact, DTL can be used in conjunction with
other loss functions that measure the discrepancy between the
predicted probability distribution of a neural network model
and the actual class labels of the ground-truth data, such as
the pixel-wise CEL (Wang et al., 2021), as shown below in
the form of CEL:

CEL(𝑃 ,𝐺) =
𝑚×𝑛
∑

(𝑥,𝑦)

𝐾
∑

𝑘=0

(

− log
(

𝑃
[𝑥,𝑦,𝑘]

)

∗ 𝐺
[𝑥,𝑦,𝑘]

)

(4a)

(𝑃 ,𝐺) = CEL(𝑃 ,𝐺) + (𝑤 ∗ DTL(𝑃 ,𝐺)𝑒) (4b)

The combined loss, denoted as (𝑃 ,𝐺), is the one we have
adopted to train deep network models for seismic semantic
segmentation in the experimental section. Not only does it
encompass DTL but also CEL, whose error score decreases
when the predicted per-pixel probability distribution 𝑃 ap-
proaches the target distribution 𝐺, encouraging the model
to predict the correct class for each pixel. Function (𝑃 ,𝐺)
contains two parameters, 𝑤 and 𝑒, that have been adopted
to equalize the order of magnitude between CEL and DTL.
The former acts as a conventional weight whereas the latter
constitutes an exponentiation mark. Concisely, the addition
of CEL and DTL seeks the proper multi-class classification
at the pixel level and simultaneously adds an extra penalty
to mismatched boundaries. Therefore, minimizing CEL and
DTL during the training stage leads to a model that better
classifies pixels and segments regions more accurately.
3.5. Computational Cost Analysis

The computational complexity of loss functions is a key
consideration in the training efficiency of deep learning mod-
els. The pixel-wise CEL is one of the most widely used cost
functions in semantic segmentation due to its simplicity and
efficiency. As indicated in Equation 4a, CEL independently
computes the negative log-likelihood between the predicted
class probability and the ground-truth label for each pixel.
Given a 2D grayscale or multi-channel image of size 𝑚 × 𝑛,
this operation involves a softmax activation followed by a
logarithm and multiplication, all of which are constant-time
operations per pixel. Therefore, the total computational com-
plexity of CEL scales linearly with the number of pixels,
resulting in a time complexity of (𝑚 × 𝑛).

Additionally, DT introduces a spatially-aware component
by encoding the distance of each pixel to the nearest object
boundary. The proposed approach uses the 𝐿1 Manhattan
distance metric, which is particularly well-suited for grid-
based image data. For a 2D image, the DT can be computed
efficiently via two directional passes — horizontal and verti-
cal — resulting in a total complexity of (𝑑 ×𝑚 × 𝑛), where
𝑑 = 2 is a constant number of scan directions. When applied
per category in a 𝐾-class segmentation task, the complexity
increases linearly with 𝐾 , becoming (𝐾 × 𝑚 × 𝑛). Despite
this additional cost, our efficient dynamic programming im-
plementations described in Algorithm 1 makes DT mapping
computationally manageable during training, adding no more
than 20% runtime per iteration.

The overall computational cost is a combination of both
components as we integrate DT with CEL. Specifically, DTL
performs a pixel-wise multiplication between the distance
map and the predicted class probabilities, effectively enforc-
ing a spatially-aware penalty for misclassified pixels near
object boundaries. As CEL operates at (𝑚 × 𝑛) and DT
mapping runs at (𝐾 × 𝑚 × 𝑛), the complexity of aggre-
gating both becomes ((𝐾 + 1) × 𝑚 × 𝑛). Even though
DTL introduces a measurable overhead compared to CEL
alone, this increase is modest relative to the potential im-
provements in boundary delineation. Furthermore, modern
GPU-accelerated deep learning frameworks can efficiently
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parallelize these computations, thereby keeping the additional
training time within acceptable bounds for practical applica-
tions. In general, most semantic segmentation tasks involving
seismic data comprise a relatively low number of classes, typ-
ically ranging from three to seven. The few classes portray
the nature of geological interpretation, where the objective
generally consists of identifying a limited set of key structural
features. This characteristic restricts the computational over-
head of class-dependent operations and makes the integration
of more advanced loss formulations computationally feasible
in practice.

4. Experimental Results
This section provides a comprehensive analysis of the

performance of the proposed Distance Transform Loss (DTL),
benchmarking it against state-of-the-art and widely adopted
cost functions in the semantic segmentation domain. To
rigorously assess the statistical significance of the results, we
employ the dependent-sample t-Test statistic, ensuring that
observed improvements are not due to random variation but
reflect meaningful advancements in performance. To enable
a deeper and more nuanced interpretation of the obtained
results, we direct readers to the supplementary materials
accompanying this work. The additional content provides
an exhaustive breakdown of performance under a variety
of quantitative metrics, such as class accuracy, intersection
over union, pixel accuracy, and F1 score, enabling a holistic
evaluation of the segmentation capabilities of DTL.
4.1. Assessment Details

The implementation of our approach is carried out using
the PyTorch framework (Paszke et al., 2019), a widely recog-
nized and versatile deep learning library. Experiments were
conducted on a high-performance computational server con-
figured with cutting-edge hardware: the server is equipped
an AMD EPYC 7742 CPU, offering 64 cores and 128 threads
for efficient data processing and parallel computation. The
system also includes an impressive 1.97 TB Random Access
Memory (RAM) for intensive tasks such as seismic volume
processing. In addition, the server contains a NVIDIA A100-
SXM4 GPU with 80 GB of dedicated memory optimized for
accelerated training of deep convolutional neural networks.
Despite all available resources, no more than 60 GB of RAM
and GPU memory were required to train the chosen architec-
tures, considering entire sections of the chosen seismic vol-
umes. Training with whole sections rather than fragments or
patches requires more memory and computational resources,
as the network must process larger amounts of data in each
training step. Besides, it also increases the training time
due to the higher computational burden involved in training
higher-resolution seismic volumes.
4.2. Segmentation Metrics

The Mean Intersection over Union, also referred to as
MIOU, is a widely recognized and extensively used evalua-
tion metric for semantic segmentation tasks. It quantifies the
degree of overlap between the segmented regions predicted

by a model and the corresponding ground-truth masks, of-
fering a straightforward measure of segmentation accuracy.
Predominantly, the Intersection over Union is commonly de-
fined as IoU = Area of Overlap

Area of Union = |𝑃∩𝐺|

|𝑃∪𝐺|

, where 𝑃 denotes the
pixels in the predicted region and 𝐺 the ground-truth region.
As a consequence, the MIOU is obtained by averaging the
IOU values across each class 𝑘 ∈ 𝐾 in such a way that
MIOU = 1

|𝐾|

∑𝐾
𝑘 IoU𝑘 = 1

|𝐾|

∑𝐾
𝑘

|𝑃𝑘∩𝐺𝑘|

|𝑃𝑘∪𝐺𝑘|
, where |𝐾| is the

total number of classes. Even though MIOU is particularly
informative in the presence of class imbalance in virtue of
preventing dominant classes from overshadowing minority
ones, it is insensitive to boundary precision, which is a key
limitation in seismic segmentation tasks.

To address the lack of boundary sensitivity in MIOU,
we also consider the Boundary F1 Score (BF1S) (Csurka
et al., 2013), which evaluates segmentation accuracy in terms
of contour alignment. More precisely, BF1S evaluates the
quality of predicted boundary delineation by calculating the
harmonic mean of the precision and recall of frontier pixels,
thereby taking into account the proximity of class contours.
This metric is defined as BF1S = 2 ⋅ Precision𝑏⋅Recall𝑏

Precision𝑏+Recall𝑏 , where
Precision𝑏 is the fraction of predicted boundary pixels cor-
rectly overlapping the ground-truth boundaries within a tol-
erance distance, and Recall𝑏 is the fraction of ground-truth
boundaries correctly detected by the prediction. A higher
BF1S indicates that the predicted boundaries are closer to the
ground truth boundaries. In summary, this metric is analo-
gous to the conventional F1 score but applied to boundary
pixels, emphasizing the ability of a model to capture fine
structural details, which is especially important for seismic
horizons and fault delineation.

We also include two pixel-level classification metrics:
Pixel Accuracy (PA) and Mean Class Accuracy (MCA). PA
measures the proportion of correctly classified pixels across
all classes with respect to the total number of pixels in the
ground truth. Formally, it is defined as PA =

∑𝐾
𝑘 |𝑃𝑘∩𝐺𝑘|
∑𝐾

𝑘 |𝐺𝑘|where 𝑃𝑘 and 𝐺𝑘 denote the predicted and ground-truth
masks of class 𝑘. In plain English, PA corresponds to the
ratio between the total number of correctly predicted pixels
(summed over all classes) and the total number of ground-
truth pixels. Despite its simplicity, PA can be misleading in
highly imbalanced datasets, as models may achieve high PA
by primarily predicting the majority class. In contrast, MCA
computes the accuracy for each class individually and then
averages these values, ensuring that each class contributes
equally regardless of its frequency in the dataset. It is defined
as MCA = 1

|𝐾|

∑𝐾
𝑘 CA𝑖 = 1

|𝐾|

∑𝐾
𝑘

|𝑃𝑘∩𝐺𝑘|

|𝐺𝑘|
, representing

the arithmetic mean of the per-class accuracies, mitigating
the bias toward majority classes that affects PA. This aspect
makes MCA particularly valuable in scenarios with severe
class imbalance, such as seismic interpretation, where minor-
ity classes often carry crucial structural information.

Vareto et al.: Preprint submitted to Elsevier Page 8 of 17



Distance Transform Loss: Boundary-aware Segmentation of Seismic Data

4.2.1. Evaluation Protocol
To ensure a reliable and robust evaluation of the proposed

method and its baselines, we adopt a 𝑘-fold cross-validation
scheme with 𝑘 = 10 partitions. This widely used protocol
offers a statistically grounded alternative to a simple train-test
split by averaging performance across multiple folds, thus
mitigating variance due to dataset partitioning. It also reduces
the risk of overfitting to a specific data subset and provides
a more generalizable estimate of model performance. Each
model is trained and validated ten times ensuring that ev-
ery inline and crossline instance appears in the validation
subset exactly once and in the training subset the remaining
𝑘 − 1 times. This repetition improves the robustness of the
evaluation and helps account for variability across different
sections of the seismic volumes. Given the high spatial corre-
lation between adjacent seismic slices, as previously noted by
Alaudah et al. (2019), we perform the selection of inlines and
crosslines in a continuous and deterministic fashion across all
folds. This methodology prevents data leakage and preserves
the spatial structure inherent to the seismic volumes.

Tables 2 and 3 report the average performance across
all folds, highlighting statistically significant improvements
using asterisks derived from dependent-sample t-Test. This
statistical test evaluates whether the mean differences in per-
formance between DTL and each baseline loss function are
statistically significant, assuming a paired design since the
same data splits are used across all methods. The test yields
p-values that quantify the likelihood that the observed im-
provements are not merely coincidental. We highlight the
results using asterisks as follows: *** for p-values ≤ 0.001,
** for ≤ 0.01, and * for ≤ 0.05, where more marks indi-
cate increasing levels of statistical confidence and superiority.
These results validate the consistency and reliability of the
observed gains, particularly for metrics sensitive to boundary
accuracy such as BF1S. In addition, Table 1 presents the
mean and 95% confidence intervals for the hyperparameters
selected for DTL during model optimization. These intervals
provide a statistical measure of variability across folds and
serve as a reference for future studies aiming to reproduce or
extend the findings.
4.2.2. Seismic Datasets

We conducted a comprehensive evaluation of our pro-
posed method across three publicly available seismic datasets,
each presenting unique geological and structural character-
istics. This diversity allows for a well-rounded assessment
of segmentation performance under varying conditions and
degrees of annotation availability.

The F3 BLOCK dataset (Alaudah et al., 2019), acquired
from the Dutch North Sea sector, represents the smallest but
most thoroughly annotated volume in our study. It includes
clearly defined training and test partitions, making it suitable
for rigorous benchmarking. To assess model robustness, we
employ 𝑘-fold cross-validation by partitioning the training
set into 𝑘 disjoint folds. The final results are reported as the
average performance across all folds, evaluated on the two
official test sets, ensuring fair comparison and reproducibility.

Table 1
bF1s results concerning optimal values for 𝑤 and 𝑒.

𝑤
𝑒 F3 Block + DeconvNet + DTL

1/1 3/4 1/2
0.05 62.14 ± 0.56 63.55 ± 0.62 63.45 ± 0.55
0.10 50.85 ± 0.99 63.59 ± 0.54 64.06 ± 0.53
0.50 13.33 ± 0.36 64.01 ± 0.55 64.89 ± 0.59
1.00 03.45 ± 0.58 62.67 ± 0.56 𝟔𝟒.𝟗𝟕 ± 𝟎.𝟓𝟒

For the PARIHAKA dataset (Inc, 2020) from New Zealand’s
Taranaki Basin, we worked with the annotated training vol-
ume containing six facies classes. Since the companion test
sets lack ground truth annotations, we adopted a conservative
evaluation approach using 𝑘-fold cross-validation exclusively
on the labeled training data. This strategy ensures all reported
metrics derive from verified annotations while maintaining
methodological consistency with the other experiments. The
dataset’s particular challenge lies in its complex depositional
environments, including mass transport deposits and subma-
rine canyon systems.

Lastly, we included the PENOBSCOT dataset (Baroni et al.,
2019), collected from the Scotian Shelf in Nova Scotia, Cana-
da. This dataset comprises a single seismic volume with an-
notations spanning seven seismic facies. Given its structure,
we employed a strict 𝑘-fold cross-validation protocol, rotating
the validation set across 𝑘 equally sized folds while using the
remaining 𝑘−1 folds for training. This procedure enables the
utilization of the entire annotated volume while preventing
data leakage, offering a more robust and statistically sound
evaluation of model generalization. Together, these three
datasets cover a wide range of geological scenarios, anno-
tation levels, and acquisition conditions, providing a strong
foundation for benchmarking the proposed segmentation ap-
proach across realistic and challenging seismic interpretation
tasks.
4.2.3. Training Settings

To ensure consistent and fair training across all datasets,
we adopted a unified training framework while adapting spe-
cific hyperparameters to the characteristics of each seismic
volume. Our approach aimed to maximize model perfor-
mance while maintaining generalizability and robustness
across diverse geological settings. For the F3 BLOCK dataset
(Alaudah et al., 2019), we employed a batch size of eight
samples per iteration, which was well-suited given the mod-
erate volume dimensions and memory constraints. Training
was conducted using the Adam optimizer, widely recognized
for its adaptive learning capabilities and effectiveness in var-
ious deep learning applications. The learning rate was set
to 0.0003, a value determined empirically to offer a reliable
trade-off between convergence speed and training stability.
Each model was trained for a maximum of 60 epochs, with
early stopping applied to terminate training when no improve-
ment was observed in validation performance for a predefined
number of epochs. Data augmentation techniques such as
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Table 2
Results exposing average bF1s and mIoU results for Active Boundary Loss (ABL), Boundary
Loss (BFL), Cross-Entropy Loss (CEL), and the proposed DTL. The results are marked
with asterisks to indicate statistical significance: *** for 𝑝 ≤ 0.001, ** for 𝑝 ≤ 0.01, and *
for 𝑝 ≤ 0.05, with more asterisks denoting higher confidence levels.

Datasets
Loss

Arch Boundary F1 Score (bF1s) Mean Intersection Over Union (mIoU)
DeconvNet SegNet U-Net DeconvNet SegNet U-Net

F3 Block

ABL 63.48 64.21 65.23 88.80 89.34∗ 89.31
BFL 63.35 62.37 66.25 86.60 84.69 89.93
CEL 63.75 64.12 66.31 88.68 88.55 90.70
DTL 64.97∗∗∗ 65.05∗ 𝟔𝟕.𝟏𝟕∗ 90.06∗∗∗ 89.26∗ 𝟗𝟏.𝟓𝟎∗∗

Penobscot

ABL 72.58 63.16 57.77 90.08 83.94 81.88
BFL 71.46 65.52 61.19 85.16 79.63 74.25
CEL 75.08∗∗∗ 68.03 60.21 91.50 87.57 84.91
DTL 𝟕𝟓.𝟑𝟑∗∗∗ 73.57∗∗∗ 65.96∗∗∗ 𝟗𝟐.𝟕𝟎∗∗ 91.33∗∗∗ 88.73∗∗∗

Parihaka

ABL 69.88 70.51 71.25 87.36 88.19 87.92
BFL 73.91∗∗∗ 69.59 𝟕𝟒.𝟔𝟖∗∗∗ 88.73∗∗∗ 84.57 88.67
CEL 69.50 69.90 71.36 86.76 87.66 88.00
DTL 72.62 72.90∗∗∗ 73.66 88.54∗∗∗ 𝟖𝟗.𝟖𝟐∗∗ 89.36∗∗

random rotations, vertical flipping, and additive Gaussian
noise were applied to promote generalization and reduce
overfitting.

In contrast, the PARIHAKA dataset (Inc, 2020) features
significantly larger input volumes, necessitating a reduction
in batch size to six samples per iteration to accommodate
GPU memory limitations. Despite the change in batch size,
the same optimization strategy, learning rate, and stopping
criteria were employed to ensure consistency in training dy-
namics. The use of data augmentation remained critical due
to the geological complexity of the Taranaki Basin, enabling
the network to learn more invariant and generalized features
across facies boundaries. As mentioned before, we followed a
𝑘-fold cross-validation scheme exclusively on the annotated
training portion of the data, given the absence of ground
truth for the provided test volumes. Similarly, the PENOB-
SCOT dataset (Baroni et al., 2019), which includes a single
annotated volume with considerable spatial extent and strati-
graphic variability, also required a reduced batch size of six.
We adhered to the same optimizer, learning rate, and early-
stopping policy used for the other datasets. Due to its single-
volume nature, a 𝑘-fold cross-validation protocol was crucial
to properly evaluate model generalization and prevent over-
fitting to specific regions of the dataset. The same set of data
augmentation techniques was employed to simulate plausible
variability in seismic patterns, thereby improving robustness.

Across all datasets, we avoided the use of small patches
during training and instead processed full 2D seismic sections
(e.g., entire inlines or crosslines). This design choice was
motivated by findings from Alaudah et al. (2019), which
indicate that using full sections reduces the risk of context loss
and misclassification errors that often occur near geological
boundaries when training on small patches. This strategy

allowed the models to exploit broader spatial context and
better capture large-scale geological structures critical for
accurate seismic segmentation.
4.3. Parameters Selection

To determine the optimal hyperparameters for the pro-
posed DTL, we conduct an extensive grid-search heuristic as
described in the evaluation protocol, focusing on the two key
components introduced in Equation 4b: the weighting factor
𝑤 and the exponentiation parameter 𝑒. This experiment is
carried out using a DECONVNET architecture trained on the
F3 BLOCK dataset, which allows us to assess the robustness
and adaptability of DTL in a new context, distinct from the
original model-dataset combinations. The results, summa-
rized in Table 1, present the mean BF1S (Boundary F1 Score)
for each configuration, offering empirical insights into how
different settings influence the boundary-aware segmentation
performance.

The analysis reveals that configuring DTL with an ex-
ponent 𝑒 = 0.50 consistently leads to superior boundary
delineation, regardless of the value chosen for 𝑤. Notably,
when 𝑒 = 0.50, even a neutral weight factor 𝑤 = 1.00 yields
competitive results, indicating that the exponentiation opera-
tion alone sufficiently modulates the loss function to priori-
tize relevant boundary regions. This outcome suggests that
the influence of 𝑤 becomes marginal when 𝑒 is adequately
set, effectively eliminating the need for tuning 𝑤 in practi-
cal applications. Consequently, DTL can be simplified to a
single-hyperparameter formulation under this configuration,
which not only reduces the computational burden of hyperpa-
rameter tuning but also facilitates its integration into existing
pipelines with minimal manual intervention. These findings
further highlight DTL practicality and ease of deployment in
real-world seismic interpretation tasks.
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Table 3
Results exposing average mCA and PA results for Active Boundary Loss (ABL), Boundary
Loss (BFL), Cross-Entropy Loss (CEL), and the proposed DTL. The results are marked
with asterisks to indicate statistical significance: *** for 𝑝 ≤ 0.001, ** for 𝑝 ≤ 0.01, and *
for 𝑝 ≤ 0.05, with more asterisks denoting higher confidence levels.

Datasets
Loss

Arch Mean Class Accuracy (mCA) Pixel Accuracy (PA)
DeconvNet SegNet U-Net DeconvNet SegNet U-Net

F3 Block

ABL 94.89 95.14 95.63 97.99 98.13 98.21
BFL 94.34 93.33 96.03 97.62 97.28 98.28
CEL 95.40∗∗ 95.33∗ 96.54∗∗ 98.07 98.12 98.33
DTL 95.45∗∗ 95.56∗ 𝟗𝟔.𝟔𝟎∗∗ 98.19∗∗∗ 98.22∗ 𝟗𝟖.𝟒𝟑∗

Penobscot

ABL 94.60 91.11 89.73 96.48 94.79 92.90
BFL 89.96 84.60 82.48 94.99 96.37 89.66
CEL 95.58 93.15 91.55 97.07 96.53 94.62
DTL 𝟗𝟔.𝟎𝟓∗∗ 95.44∗∗∗ 94.07∗∗∗ 𝟗𝟖.𝟏𝟎∗∗∗ 97.24∗∗ 96.19∗∗∗

Parihaka

ABL 92.97 93.40 93.38 97.03 97.11 97.19
BFL 93.92 90.00 93.21 97.44∗∗∗ 96.68 97.38
CEL 92.98 93.84 93.78 96.87 97.03 97.11
DTL 𝟗𝟒.𝟓𝟔∗∗∗ 94.41∗∗∗ 94.47∗∗∗ 97.43∗∗∗ 97.51∗∗∗ 𝟗𝟕.𝟓𝟕∗∗

4.4. Literature Comparison
In contrast to the previous experiment, which focused

on optimizing the Distance Tranform Loss parameters, this
section investigates the influence of various cost functions on
the performance of deep neural networks for the semantic seg-
mentation of seismic data. Specifically, we trained three well-
known architectures – DECONVNET (Noh et al., 2015), SEG-
NET (Badrinarayanan et al., 2017), and U-NET (Ronneberger
et al., 2015) – using a supervised learning paradigm and eval-
uated their performance in labeling inline and crossline sec-
tions. The results, summarized in Tables 2 and 3, showcase
the impact of employing four different cost functions across
three geological volumes, resulting in a total of 36 unique
performance measurements per evlauation metric. All cost
functions were evaluated based on their ability to produce
more accurate boundaries and enhance overall segmentation
accuracy. Additionally, the variations in performance across
different architectures and cost functions provide deeper in-
sights into their relative capability.

This investigation is conducted to compare the perfor-
mance improvements achieved by DTL when compared to
the traditional CEL (Wang et al., 2021), as well as two domain-
specific cost functions: BFL (Bokhovkin and Burnaev, 2019)
and ABL (Wang et al., 2022). CEL, a pixel-wise variant of
the long-established log loss, has long been the standard loss
function applied in semantic segmentation tasks due to its
simplicity and effectiveness in classifying individual pixels.
In contrast, ABL and BFL are more recently developed loss
functions that are specifically designed to improve boundary-
aware segmentation. These methods were originally designed
to penalize inaccuracies in the delineation of object bound-
aries in domains such as remote sensing and urban/indoor
segmentation. Both ABL and BFL have demonstrated signifi-

cant success in these domains, achieving promising results by
incorporating boundary-aware penalties that drive better per-
formance on boundary-sensitive segmentation tasks. In this
study, we systematically analyze these three baseline meth-
ods, as they represent both widely adopted approaches (like
CEL) and more advanced, boundary-sensitive techniques
(such as BFL and ABL).

Table 2 contrasts the performance of DTL with the base-
lines across multiple datasets and architectures using BF1S
and MIOU metrics. In regard to BF1S, which emphasizes
boundary precision, DTL exhibits clear improvements in
nearly all settings. For the F3 BLOCK dataset, DTL achieves
the highest BF1S scores across the three architectures with
statistically significant gains, particularly in U-NET where
it reaches 67.17. In the more heterogeneous PENOBSCOT,
DTL again surpasses all baselines, most notably with SEG-
NET and U-NET, where the improvements are substantial:
73.57 for SEGNET and 65.96 for U-NET, both with high sta-
tistical confidence (𝑝 ≤ 0.001). Similarly, in PARIHAKA,
DTL maintains competitive performance, matching or ex-
ceeding baselines, with remarkable boundary improvements
for SEGNET (72.90, 𝑝 ≤ 0.001). The advantages of DTL
are further corroborated by the MIOU results, providing a
global measure of segmentation accuracy across entire im-
ages. For F3 BLOCK, DTL again demonstrates superior
performance across all architectures, achieving the highest
values and reaching 91.50 with U-NET, which represents a
significant improvement over CEL (+0.80) and BFL (+1.57).
In the PENOBSCOT dataset, DTL achieves the strongest re-
sults overall, delivering 92.70 with DECONVNET, 91.33 with
SEGNET, and 88.73 with U-NET, all statistically significant
improvements over the competing baselines. Even though
BFL achieves a slightly superior score on the PARIHAKA
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Figure 2: F3 Block + U-Net: Qualitative results regarding inline #99 from test set #2

displaying its respective ground truth (GT) alongside the network reconstructions obtained
with Active Boundary Loss (ABL), Boundary F1 Loss (BFL), Cross-Entropy Loss (CEL),
and the proposed Distance Transform Loss (DTL).

dataset when coupled with DECONVNET, DTL still provides
consistently higher or comparable MIOU, particularly with
SEGNET (89.82, 𝑝 ≤ 0.01) and U-NET (89.36, 𝑝 ≤ 0.01).

Table 3 compares the four cost functions under the per-
spective of class and pixel-level accuracy. In terms of MCA,
which is particularly relevant in scenarios of class imbal-
ance, DTL consistently achieves the best or near-best perfor-
mance across datasets and architectures. On the F3 BLOCK
dataset, DTL reaches the highest MCA in all architectures,
most notably 96.60 with U-NET as it is statistically tied with
CEL (96.54) and markedly higher than ABL and BFL. In
the more challenging PENOBSCOT dataset, where class im-

balance is more pronounced, DTL exhibits a clear superior-
ity, reaching 96.05 with DECONVNET, 95.44 with SEGNET,
and 94.07 with U-NET. Similarly, in the PARIHAKA dataset,
DTL achieves the highest MCA across all architectures, with
values above 94.40 in every case, outperforming both CEL
and ABL. The proposed loss also delivers substantial im-
provements over BFL, which shows weaker performance,
particularly when paired with SEGNET (90.00). PA further
reinforces these trends as DTL reaches the highest PA with
all architectures on F3 BLOCK, peaking at 98.43 for U-NET.
DTL again provides a noticeable boost on PENOBSCOT, es-
pecially with U-NET, where it achieves 96.19 against CEL’s
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Color map: H0: Shallow Cover H1: Deep Parallel H2: Mississauga Deltaics H3: Transitional Parallel

H4: Subtle Deep Marine H5: Variable Subparallel H6: Slump Deposit Zone H7: High-Energy Truncated
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Figure 3: Penobscot + SegNet: Qualitative results regarding inline #387 displaying
its respective ground truth (GT) alongside network reconstructions obtained with Active
Boundary Loss (ABL), Boundary F1 Loss (BFL), Cross-Entropy Loss (CEL), and the
proposed Distance Transform Loss (DTL).

94.62 and ABL’s 92.90, reflecting gains of up to +6.53 points
in pixel-level correctness. Even on PARIHAKA, where the
baselines achieve strong PA values, DTL holds statistically
significant improvements with SEGNET with 97.57 in U-NET
and 97.51 in SEGNET. These results suggest that DTL not
only ensures class-level fairness but also enhances overall
pixel-level correctness, even in difficult settings.

In a previous work, Alaudah et al. (2019) utilized DE-
CONVNET in conjunction with the CEL to perform semantic
segmentation on the Dutch F3 BLOCK dataset, presenting
results with a reported Pixel Accuracy of 90.5% and Mean
Class Accuracy of 87.7%. Even though their work demon-
strated the potential of deep learning in seismic segmentation,
their results were outperformed by the proposed DTL, which
achieved a remarkable Pixel Accuracy of 98.19% and Mean
Class Accuracy of 95.45%. This substantial improvement
brings light to the robustness of DTL in addressing the in-
herent challenges of boundary delineation and spatial local-
ization, particularly in scenarios with complex subsurface
structures. We refer readers to the additional quantitative
metrics for semantic segmentation and further detailed infor-
mation provided in the supplementary material. The auxiliary
content presents additional experiments and evaluation met-
rics that are typically employed in semantic segmentation
research, enabling a rigorous comparison of our findings with

those reported in the literature.
Curiously, ABL and BFL functions were not able to match

the performance of both CEL and DTL on the PENOBSCOT
benchmark. We believe that ABL and BFL struggled to as-
sign high probability scores to pixels located on class bound-
aries due to the lack of continuity in many horizons, a preva-
lent issue also observed in the training data of the Nova Scotia
dataset (Chevitarese et al., 2018). This discontinuity possibly
undermines the ability of ABL and BFL to effectively delin-
eate class boundaries, especially in datasets where horizon
structures are fragmented or poorly defined. Apparently, this
limitation did not hinder the performance of DTL, which
outperformed all three baselines. DTL also achieved com-
petitive results on the PARIHAKA dataset, surpassing ABL
and CEL under both evaluation metrics. This is the only do-
main where BFL marginally outperformed DTL in terms of
the boundary F1 score (BF1S), although DTL still maintains
superior performance in the mean Intersection over Union
(MIOU) assessment.

Unlike more complex approaches such as ABL and BFL,
DTL achieves these results with notable simplicity, empha-
sizing the balance between efficiency and performance. Its
ability to generalize across networks and benchmarks high-
lights its potential as a reliable loss function for semantic
segmentation in seismic interpretation tasks.It is worth em-
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Figure 4: Parihaka + DeconvNet: Qualitative results regarding inline #413 displaying
its respective ground truth (GT) alongside four network reconstructions obtained with
Active Boundary Loss (ABL), Boundary F1 Loss (BFL), Cross-Entropy Loss (CEL), and
the proposed Distance Transform Loss (DTL).

phasizing that we do not proclaim DTL as a universal replace-
ment for traditional losses, but rather as a complementary
strategy – particularly beneficial in delineating stratigraphic
structures where boundary precision and shape continuity
are critical. To ensure a fair and transparent comparison, all
experiments have been conducted under controlled settings
with identical network architectures and data splits, isolating
the effect of the loss function itself. Moreover, we believe
that this consistent quantitative improvement across multiple
datasets is not only a reflection of DTL’s robustness but also
a compelling argument for its broader applicability in seismic
interpretation tasks.

4.5. Qualitative Evaluation
Figure 2 illustrates the segmentation results obtained with

a U-NET trained on the F3 BLOCK dataset. CEL produces
reasonable predictions but suffers from scattered misclassi-
fications within the Lower North Sea and Rijnland/Chalk
intervals, where transitions appear blurred. BFL improves
boundary delineation between Upper and Middle North Sea
units but introduces inconsistencies in the Scruff and Zech-
stein formations, fragmenting their continuity. ABL better
preserves the slope geometries of the Rijnland/Chalk region
and shows improved facies transitions, yet still fails to capture
the structural coherence of the Zechstein facies in the south-
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ern section. In contrast, DTL produces cleaner and more
geologically consistent results across all units: the wedge-
shaped Rijnland/Chalk interval is sharply defined, Upper
and Middle North Sea layers remain continuous, and the
Scruff–Zechstein boundary is more faithfully reconstructed.
Overall, DTL outperforms other losses by simultaneously
enhancing facies coherence and maintaining sharper bound-
ary transitions across structurally complex zones of the F3
BLOCK volume.

Figure 3 presents segmentation outcomes from a SEG-
NET-based model trained on the PENOBSCOT dataset. CEL
achieves good results in the Shallow Cover (H0) and High-
Energy Truncated (H7) facies but struggles in the Subtle Deep
Marine (H4) and Variable Subparallel (H5) zones, where tran-
sitions become diffuse and vertically smeared. BFL sharpens
horizon boundaries, particularly between Deep Parallel (H1)
and Mississauga Deltaic (H2) facies, but generates noisy arti-
facts within the Slump Deposit Zone (H6), breaking structural
continuity. Similarly, ABL improves boundary localization in
transitional facies (H3) yet underrepresents smooth layering
within deeper regions, leading to geologically implausible
segmentation. DTL, however, preserves both vertical layer-
ing and lateral continuity across facies: it cleanly separates
Shallow Cover from Deep Parallel zones, maintains coherent
H4 and H5 intervals, and delivers consistent reconstruction of
the H6 slump region without spurious fragmentation. These
results confirm that DTL produces the most geologically
coherent and stratigraphically reliable segmentation in the
PENOBSCOT volume.

Lastly, Figure 4 shows qualitative results from a DECON-
VNET applied to the PARIHAKA dataset. CEL generates plau-
sible facies assignments but produces poor transitions be-
tween Slope Mudstone A, Slope Mudstone B, and Mass De-
posit units, leading to blurred contacts and over-segmentation.
BFL sharpens the separation of Submarine Canyon deposits
from adjacent mudstone facies but introduces boundary ar-
tifacts along slope geometries. ABL delivers precise de-
lineation of curved and dipping features, especially at the
interface between Slope Valley and Submarine Canyon, but
misses some stratigraphic contrasts within Mass Deposits.
DTL achieves the most balanced performance: boundaries
between Slope Mudstone facies are well preserved, the Sub-
marine Canyon is sharply defined, and reflector continuity
is maintained across Mass Deposit and Basement intervals.
These results highlight that while boundary-aware methods
consistently outperform CEL, DTL stands out by combin-
ing sharp boundary delineation with structural continuity,
yielding the most geologically consistent segmentation for
the PARIHAKA dataset.

Although DTL may not always yield the visually sharpest
boundaries in every instance, it regularly delivers robust seg-
mentation performance across diverse geological regions by
effectively capturing subtle structural variations and main-
taining coherence in class assignments. This balance between
boundary delineation and global consistency highlights its
strength in producing geologically plausible segmentations,
even in challenging and heterogeneous subsurface scenarios.

Furthermore, the adaptability and resilience of DTL across
varying stratigraphic settings underscore its suitability for
tasks that demand both precise boundary reconstruction and
reliable facies classification. The qualitative results thus rein-
force the importance of carefully selecting loss functions that
align with the specific objectives of seismic segmentation,
ultimately contributing to more accurate geological interpre-
tations and improved efficiency in resource exploration and
decision-making workflows.
4.6. Advantages and Limitations

DTL introduces some advantages tailored to the chal-
lenges of seismic data interpretation. Unlike standard pixel-
wise cost functions, it leverages a distance transform map
to impose greater penalties on misclassifications occurring
near class boundaries. DTL makes the neural network “more
sensitive” to structural discontinuities and stratigraphic tran-
sitions, which are essential for the accurate interpretation
of seismic facies and geological features such as faults, salt
bodies, and channel systems. Additionally, DTL is easily inte-
grated with traditional loss functions, such as CEL, requiring
only minimal adjustments to existing training pipelines. Its
modular nature allows it to complement boundary-agnostic
supervision strategies, leading to enhanced segmentation per-
formance with minimal architectural modifications.

Experiments across multiple seismic datasets, pointed
out in Tables 2 and 3, demonstrate that DTL consistently im-
proves boundary scores (BF1S), indicating better alignment
with class borders of the ground-truth. This is particularly
beneficial in marine and subsurface seismic surveys where
continuous reflectors and subtle stratigraphic changes must
be captured accurately. Furthermore, DTL contributes to
more geologically plausible segmentation outputs by preserv-
ing reflector continuity and avoiding over-segmentation of
layered structures. Its effectiveness remains consistent across
distinct architectures (e.g., DECONVNET, SEGNET, U-NET),
reinforcing its generalizability and adaptability to different
model backbones. The grid-based use of the 𝐿1 Manhattan
distance within the distance transform also brings a compu-
tational advantage, leveraging efficient two-pass algorithms
for runtime feasibility during training.

Despite these strengths, DTL has certain limitations that
merit discussion. For instance, its reliance on accurate bound-
ary information from the ground-truth annotations means
that performance may degrade in settings where labels are
noisy, incomplete, or ambiguous — conditions that are not
uncommon in real-world seismic datasets. DTL introduces
a computational overhead relative to simpler loss functions
due to the need to compute distance maps at each training
iteration, although this cost remains tractable with modern
graphics processing unit resources. Another drawback is
that while DTL enhances boundary precision, it may slightly
compromise performance in homogeneous regions where
boundary guidance is less critical. Lastly, as a supervised
method, DTL is inherently limited by the availability of la-
beled data, which is often scarce in geoscience. While self-
supervised and semi-supervised paradigms can reduce the
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need for large labeled datasets during pretraining or represen-
tation learning, the supervision provided by DTL during the
fine-tuning stage requires high-quality annotations to yield
its intended boundary-aware benefits. Consequently, the an-
notation burden is not entirely eliminated but rather shifted
toward ensuring precision in the labeled data used for problem
specialization.

5. Conclusions
In this work, we introduce the Distance Transform Loss

(DTL), a cost function specifically designed to guide deep
networks into segmenting more accurate inter-class bound-
aries. DTL works in an intuitive and straightforward manner
by assigning higher penalty scores the farther a predicted
boundary lies from the ground truth.

The proposed approach contrasts with most existing meth-
ods in the literature, which often require complex calcula-
tions or hyper-parameter tuning tailored to specific datasets.
In opposition to many segmentation methods that fine-tune
hyper-parameters on each dataset, DTL parameters were se-
lected using only a single domain, the F3 BLOCK dataset, and
then applied directly to two other distinct seismic datasets,
PENOBSCOT and PARIHAKA. Despite the cross-domain eval-
uation, experiments have demonstrated versatility and effec-
tiveness of DTL, delivering either superior or competitive
results across multiple benchmarks. In fact, the quantitative
analysis reveals DTL standing out in 5 out of 6 scenarios,
showcasing its ability to generalize well beyond the initial
training domain. Chances are the proposed approach could
have obtained even higher performance on PENOBSCOT and
PARIHAKA datasets if we had considered their validation sets
when picking the best parameters.

In conclusion, the qualitative results underscore the im-
pact of incorporating DTL into the training process of deep
networks. Not only does the use of DTL enhance the visual
accuracy of boundary delineation in seismic data but it also
improves the overall classification performance in seman-
tic segmentation tasks. The findings suggest that DTL is a
valuable contribution to the computer and earth science com-
munities, producing artificial neural networks with robustness
and adaptability in diverse geophysical contexts.

As a direction for future work, we propose exploring
the integration of self-supervised learning pretraining with
boundary-aware loss functions like DTL during downstream
fine-tuning. This combined strategy holds potential to lever-
age large volumes of unlabeled seismic data for robust feature
learning while enhancing boundary delineation through task-
specific optimization. Such an approach could improve seg-
mentation performance in scenarios with limited annotated
data, further extending the practical applicability of DTL in
real-world seismic interpretation tasks.
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